Monatshefte für Chemie Chemical Monthly Printed in Austria

Hexafluoroacetone as a Protecting and Activating Reagent. Regioselective Esterification of Aspartic, Malic, and Thiomalic Acid

Ksenia Pumpor¹, Elisabeth Windeisen¹, Jan Spengler^{1,2}, Fernando Albericio^{2,*}, and Klaus Burger^{1,*}

¹ Department of Chemistry, University of Leipzig, D-04103 Leipzig, Germany

² Barcelona Biomedical Research Institute, Barcelona Science Parc, University of Barcelona, 08028 Barcelona, Spain

Received January 7, 2004; accepted January 30, 2004 Published online August 23, 2004 © Springer-Verlag 2004

Summary. Hexafluoroacetone reacts with α -functionalized α , β -dicarboxy acids like aspartic, malic, and thiomalic acid to give exclusively five-membered lactones. The β -carboxylic groups remain unaffected and can be derivatized separately. They can be linked *i.a.* to orthogonal protecting groups or multivalent alcohols like pentaerythritol to give synthetically valuable building blocks.

Keywords. Branched depsipeptides; Branched peptides; Hexafluoroacetone; Peptidomimetics; Polyester.

Introduction

Regioselective functionalization of multifunctional compounds requires a sophisticated combination of protection and activation strategies [1, 2]. Nevertheless, the synthesis of supposedly simple target molecules like aspartic and glutamic acid α esters [3], aspartic and glutamic acid α -amides (isoasparagine, isoglutamine) [4] as well as of the corresponding β -isomers are surprisingly laborious more-step procedures [5]. The development of new methodology for the construction of peptides, depsipeptides, and peptidomimetics with a minimum of steps is a great challenge for preparative chemists.

Multifunctional systems can serve as scaffolds if there is an orthogonal protective group concept available. In general, the α -carboxylic and the α -amino group of aspartic acid are incorporated into the backbone of peptides or peptidomimetics.

^{*} Corresponding authors. E-mails: burger@chemie.uni-leipzig.de, albericio@pcb.ub.es

However, for post-synthetic transformations of the β -carboxylic group there exist several options [6], including glycosylation, lipidation, phosphorylation as well as attachment to transport systems and pharmacophors or rearrangement to give isopeptides [7].

We demonstrated that the "hexafluoroacetone route" offers a new, efficient approach to regioselective derivatization of multifunctional compounds of type HOOC– $(CH_2)_n$ –CH(XH)–COOH. Hexafluoroacetone reacts selectively with α functionalized dicarboxylic acids like aspartic [8], malic [9], thiomalic acids [10], and homologues to give exclusively five-membered lactones. With the formation of the five-membered ring the α -functionality is protected. Furthermore, the adjacent carboxylic group is protected and activated. With nucleophiles, *e.g.* amines or amino acid esters, amides or peptides are formed, while the α -placed functional group is deprotected. Since the β -carboxylic groups remain unaffected, separate derivatizations at both carboxylic groups are possible.

Recently we reported on synthetic aspects of the selective α -activation [3]. In this paper we focus on the regioselective β -esterification using the potential of the "hexafluoroacetone route". Esterification offers structural diversity. Furthermore, esters are the most common protecting groups for carboxylic acids [11]. Therefore, we studied the stability of the lactone moiety under different conditions applied for side chain esterification.

Results and Discussion

Lactones 2a-2c are formed in excellent yields on treatment of a solution of commercially available acids 1a-1c in *DMSO* or *DMF* with two equivalents of hexa-fluoroacetone (*HFA*) (Scheme 1).

Direct Esterification of the β -Carboxylic Group

 β -Methylesters of the hexafluoroacetone protected dicarboxylic acids **2a**–**2c** and homologues are obtained quantitatively on reaction with diazomethane in diethyl ether at 0°C within minutes (**2** \rightarrow **3**, Scheme 2). The progress of the reaction can be monitored by ¹⁹F NMR spectroscopy. Noteworthy, in the case of **2a** a large excess of diazomethane, long reaction times, and elevated temperatures result in a base-induced fragmentation reaction [12].

Isobutylene on acid catalysis reacts with compounds 2a-2c at room temperature to give the corresponding β -tert-butylesters 4a-4c in very good yields (Scheme 2). Tert-Butyl esters are orthogonal to Fmoc, which is one of the most

Scheme 1

popular amino protecting groups in peptide synthesis. Surprisingly, compounds 4 on standing at room temperature undergo the retro reaction.

Esterification via β *-Carboxylic Acid Chlorides*

Alternatively, β -esters of compounds 2 can be obtained *via* the corresponding acid chlorides and acid fluorides, respectively. A preparatively simple way to activate the β -carboxy group in 2a–2c is the conversion into the acid chloride on treatment with thionyl chloride or phosphorus pentachloride [13]. The conversion $2 \rightarrow 5$ is nearly quantitative (Scheme 3) [8–10]. However, this activation strategy is not applicable to hexafluoroacetone-protected *Glu* and *Aad* (aminoadipic acid), because the ω -acid chlorides formed first, spontaneously undergo cyclocondensation to give the corresponding five- and six-membered lactams [14].

Compounds 5 are dielectrophiles, readily capable for two consecutive acylation steps [15]. The acid chloride moiety is the more reactive center. Compounds 5 react with equimolar amounts of alcohols, *e.g.* isopropanol and allyl alcohol in diethyl ether to give esters 6 and 7 (Scheme 3). Under these conditions the lactone moiety remains unaffected. Allyl protection of carboxylic groups is orthogonal to ${}^{t}Bu$ and *Fmoc* [16]. The allyl esters 7a–7c are accessible in good yields (65–90%), orthogonally protected, and activated, ready for incorporation into peptides and peptidomimetics. β -Derivatization with alcohols or amines having long alkyl sidechains is an elegant route to incorporate lipophilic anchors.

Esterification with multivalent alcohols is a preparatively valuable reaction. Acid chlorides **5** react with polyalcohols (1 equivalent per HO group) like glycol, 1,1,1-tris(hydroxymethyl)ethane and pentaerythritol in boiling toluene to give the

corresponding polyesters **8–10** (Scheme 4) in good to excellent yields (61–100%). Again the lactone moiety remains unaffected under carefully controlled conditions. The high symmetry of compounds **10** can be easily proved by ¹H and ¹³C NMR spectroscopy (Scheme 5).

1,1,1-Tris(hydroxymethyl)ethane and pentaerythritol serve as core for dendrimers [17]. Dendrimers, a type of branched macromolecules, are a relatively new class of materials with many applications [18]. One of the major advantages of dendrimers is their globular structure and relatively small size which facilitates cell uptake more efficiently than larger carriers. Another advantage of dendrimers is that their synthesis results in monodisperse molecules. In addition, dendrimers should exhibit a high drug-carrying capacity because of their multivalency [19].

Under carefully controlled conditions the lactone moiety serves in the first step as protective group. In the second step, compounds 6-10 act as activated esters and therefore can be readily cleaved by O- and N-nucleophiles.

Hydrolysis of compounds 8-10 can be achieved on heating in water/THF or water/acetonitrile mixtures. Reaction times can be reduced considerably when

hydrolysis is performed with diluted HCl. Compounds **11–13** (Scheme 6) are interesting ligands for metal ion transport [20].

Methanolysis of compounds **7b**, **7c**, and **10c** can be achieved quantitatively in boiling methanol (Scheme 7). When **6c** was treated with an excess of allyl alcohol, the expected diester could not be isolated. Instead, the mercapto group formed during lactone ring cleavage adds to a second equivalent of the allyl acohol to give thioether **16** (Scheme 8).

Scheme 8

Aminolytic cleavage of the lactone moiety of compounds 8-10 with benzylamine occurs below 0°C in very good yields (Scheme 9). The readily precipitating compounds 17-19 are analytically pure after careful trituration with ice-cold diethyl ether. At room temperature aminolytic cleavage of the lactone moiety

Scheme 10

competes with the cleavage of the ester function to give product mixtures, which are difficult to separate.

Reaction of **9b** and **10b** with amino acid esters provides branched peptide and depsipeptide fragments 20-21 (Scheme 10). After deprotection the chain-elongation can be continued by conventional methods.

Conclusion

It was demonstrated that the "hexafluoroacetone route" offers a preparatively simple access to β -esters of aspartic, malic, and thiomalic acid, which can serve as versatile intermediates for post-synthetic transformations. Esterification of polyalcohols and consecutive aminolysis of the polylactones obtained can serve as various start reaction for the synthesis of branched peptides and depsipeptides and for divergent syntheses of dendrimers.

Experimental

General

Solvents were purified and dried prior to use. Reagents were used as purchased. Melting points (uncorrected) were determined on a Boetius heating table. Mass spectra were recorded on a VG 12-250 and a MAT 212 (Masslab) electron ionization spectrometer (EI-MS, EI = 70 eV). IR spectra were obtained with a FTIR spectrometer (Genesis ATI Mattson/Unicam) and a Specord M 80 (Fa. Carl Zeiss, Jena). ¹H (200 MHz, 300 MHz), ¹³C (50 MHz, 75 MHz), and ¹⁹F (188 MHz) NMR spectra were recorded on a Varian Gemini spectrometer. *TMS* was used as reference of ¹H and ¹³C NMR spectra (internal), and CF₃COOH for ¹⁹F NMR spectra (external). Flash chromatography was performed using silica gel (32–63 μ m) with solvent systems given in the text. Elemental analyses were performed with a CHNO-S Rapid apparatus (Fa. Heraeus); their results were in agreement with calculated values.

Reaction of 2a-2c with Diazomethane

To a solution of 2 (10 mmol) in diethyl ether (20 cm^3) an excess of diazomethane in diethyl ether (30 mmol) was added at 0°C. After stirring for 10 min, the solvent and the excess of diazomethane was removed *in vacuo*.

Methyl [(4S)-2,2-Bis(trifluoromethyl)-5-oxo-1,3-oxazolidin-4-yl]acetate (3a, C₈H₇F₆NO₄)

2a (2.80 g, 10 mmol) was converted into **3a** (2.95 g, 100%); mp 50°C; $[\alpha]_D = -24.0^{\circ} \text{ cm}^3 \text{ g}^{-1} \text{ dm}^{-1}$ (*c* = 1.0, CHCl₃); IR (KBr): $\bar{\nu} = 3375$, 1830, 1720 cm⁻¹; ¹H NMR (CDCl₃): $\delta = 2.63$ (dd, *J* = 17.5, 10.0 Hz, 1H), 2.92 (dd, *J* = 17.5, 3.0 Hz, 1H), 3.56 (d, *J* = 7.0 Hz, 1H, NH), 3.70 (s, 3H) 4.32 (ddd, *J* = 10.0, 7.0, 3.0 Hz, 1H) ppm; ¹³C NMR (CDCl₃): $\delta = 37.6$, 51.6, 52.5, 88.6 (sept, *J* = 35.0 Hz), 120.3 (q, *J* = 286.0 Hz), 121.4 (q, *J* = 289.0 Hz), 170.1, 170.8 ppm; ¹⁹F NMR (CDCl₃): $\delta = -2.5$ (q, *J* = 9.0 Hz, 3F, CF₃), -1.5 (q, *J* = 9.0 Hz, 3F, CF₃) ppm; MS (EI): m/z = 295 [M]⁺, 263 [M–CH₃OH]⁺, 235 [M–CH₃OH, –CO]⁺, 166 [(CF₃)₂CO]⁺, 69 [CF₃]⁺, 43 [C₂H₅N]⁺.

Methyl [(5S)-2,2-Bis(trifluoromethyl)-4-oxo-1,3-dioxolan-5-yl]acetate (3b, C₈H₆F₆O₅)

2b (2.82 g, 10 mmol) was converted into **3b** (2.96 g, 100%); bp 38–40°C (0.2 torr); $[\alpha]_{D} = -16.1^{\circ} \text{ cm}^{3} \text{ g}^{-1} \text{ dm}^{-1}$ (c = 1.0, CHCl₃); IR (film): $\bar{\nu} = 1840$, 1735 cm⁻¹; ¹H NMR (CDCl₃): $\delta = 2.91$

(dd, J = 17.5, 7.0 Hz, 1H), 3.04 (dd, J = 17.5, 4.0 Hz, 1H), 3.77 (s, 3H), 5.09 (dd, J = 7.0, 4.0 Hz, 1H) ppm; ¹³C NMR (CDCl₃): $\delta = 35.7$, 52.5, 71.8, 97.7 (sept, J = 36.0 Hz), 118.7 (q, J = 286.0 Hz), 119.7 (q, J = 289.0 Hz), 166.9, 167.9 ppm; ¹⁹F NMR (CDCl₃): $\delta = -2.21$ (q, J = 7.0 Hz, 3F, CF₃), -1.94 (q, J = 7.0 Hz, 3F, CF₃) ppm; MS (EI): m/z = 296 [M]⁺, 264 [M–CH₃OH]⁺, 236 [M–CH₃OH, –CO]⁺, 45 [COOH]⁺, 32 [CH₃OH]⁺.

Methyl [2,2-*Bis*(*trifluoromethyl*)-5-*oxo*-1,3-*oxathiolan*-4-*yl*]*acetate* (**3c**, C₈H₆F₆O₄S)

2c (2.98 g, 10 mmol) was converted into **3c** (3.12 g, 100%); bp 140°C (2 torr); oil; IR (CHCl₃): $\bar{\nu} = 2960$, 1805, 1725 cm⁻¹; ¹H NMR (CDCl₃): $\delta = 2.92$ (dd, J = 18.0, 10.0 Hz, 1H), 3.30 (dd, J = 18.0, 3.5 Hz, 1H), 3.77 (s, 3H), 4.53 (dd, J = 10.0, 3.5 Hz, 1H) ppm; ¹³C NMR (CDCl₃): $\delta = 38.1$, 42.0, 52.9, 83.6 (sept, J = 35.0 Hz), 120.9 (q, J = 283.0 Hz), 121.5 (q, J = 285.0 Hz), 170.1, 170.1 ppm; ¹⁹F NMR (CDCl₃): $\delta = 0.68$ (q, J = 9.0 Hz, 3F, CF₃), 1.52 (q, J = 9.0 Hz, 3F, CF₃) ppm; MS (EI): m/z = 312 [M]⁺, 280 [M–CH₃OH]⁺, 252 [M–CH₃OH, –CO]⁺, 87 [COCH₂CSH]⁺, 59 [CH₂CSH]⁺, 45 [CSH]⁺.

Reaction of 2a-2c with Isobutene/conc. H_2SO_4

A vigorously stirred solution of **2** (20 mmol) in *DCM* (40 cm³) was treated with an excess of isobutene in the presence of 4 drops of conc. H_2SO_4 for 6 h. *DCM* (75 cm³) was added, the organic phase was extracted with ice-cold water, with NaHCO₃ solution, again with water (30 cm³), and dried with MgSO₄.

tert-Butyl [(4S)-2,2-Bis(trifluoromethyl)-5-oxo-1,3-oxazolidin-4-yl]acetate (4a, $C_{11}H_{13}F_6NO_4$)

2a (5.62 g, 20 mmol) was converted into **4a** (5.40 g, 80%); mp 73°C; $[\alpha]_D = -9.0^{\circ} \text{ cm}^3 \text{ g}^{-1} \text{ dm}^{-1}$ (*c* = 1.0, CHCl₃); IR (KBr): $\bar{\nu} = 3345$, 1815, 1725 cm⁻¹; ¹H NMR (CDCl₃): $\delta = 1.45$ (s, 9H), 2.60 (dd, *J* = 17.0, 10.0 Hz, 1H), 2.89 (dd, *J* = 17.0, 3.0 Hz, 1H), 3.66 (d, *J* = 7.0 Hz, 1H, NH), 4.32 (ddd, *J* = 10.0, 7.0, 3.0 Hz, 1H) ppm; ¹³C NMR (CDCl₃): $\delta = 28.0$, 38.6, 51.4, 82.7, 88.3 (sept, *J* = 35.0 Hz), 120.1 (q, *J* = 285.0 Hz), 121.3 (q, *J* = 288.0 Hz), 169.4, 170.0 ppm; ¹⁹F NMR (CDCl₃): $\delta = -3.1$ (q, *J* = 9.0 Hz, 3F, CF₃), -2.2 (q, *J* = 9.0 Hz, 3F, CF₃) ppm; MS (EI): m/z = 281 [M–(CH₃)₂C=CH₂]⁺, 236 [M–(CH₃)₃COCO]⁺, 57 [(CH₃)₃C]⁺.

tert-Butyl [(5S)-2,2-Bis(trifluoromethyl)-4-oxo-1,3-dioxolan-5-yl]acetate (4b, C₁₁H₁₂F₆O₅)

2b (2.80 g, 10 mmol) was converted into **4b** (2.58 g, 80%); mp 49°C; IR (KBr): $\bar{\nu} = 1860, 1735 \text{ cm}^{-1}$; ¹H NMR (CDCl₃): $\delta = 1.48$ (s, 9H), 2.80 (dd, J = 17.0, 7.0 Hz, 1H), 2.92 (dd, J = 17.0, 4.0 Hz, 1H), 5.00 (dd, J = 7.0, 4.0 Hz, 1H) ppm; ¹³C NMR (CDCl₃): $\delta = 28.0, 37.2, 72.1, 83.2, 97.8$ (sept, J = 36.0 Hz), 118.9 (q, J = 287.0 Hz), 119.8 (q, J = 290.0 Hz), 166.7, 167.3 ppm; ¹⁹F NMR (CDCl₃): $\delta = -3.03$ (q, $J = 6.0 \text{ Hz}, 3\text{ F}, \text{ CF}_3$), -2.61 (q, $J = 6.0 \text{ Hz}, 3\text{ F}, \text{ CF}_3$) ppm; MS (EI): m/z = 323[M–CH₃]⁺, 265 [M–(CH₃)₃CO]⁺, 99 [265–HFA]⁺, 69 [CF₃]⁺.

tert-Butyl [2,2-Bis(trifluoromethyl)-5-oxo-1,3-oxathiolan-4-yl]acetate (4c, $C_{11}H_{12}F_6O_4S$)

2c (2.98 g, 10 mmol) was converted into **4c** (2.27 g, 64%); mp 60°C; IR (KBr): $\bar{\nu} = 1815$, 1715 cm⁻¹; ¹H NMR (CDCl₃): $\delta = 1.47$ (s, 9H), 2.80 (dd, J = 17.5, 11.0 Hz, 1H), 3.22 (dd, J = 17.5, 3.5 Hz, 1H), 4.45 (dd, J = 11.0, 3.5 Hz, 1H) ppm; ¹³C NMR (CDCl₃): $\delta = 28.1$, 39.7, 42.3, 83.4, 83.6 (sept, J = 35.0 Hz), 120.9 (q, J = 283.0 Hz), 121.5 (q, J = 282.0 Hz), 168.7, 170.2 ppm; ¹⁹F NMR (CDCl₃):

 $\delta = 0.81$ (q, J = 9.0 Hz, 3F, CF₃), 1.69 (q, J = 9.0 Hz, 3F, CF₃) ppm; MS (EI): m/z = 354 [M]⁺, 339 [M–CH₃]⁺, 281 [M–(CH₃)₃CO]⁺, 252 [M–(CH₃)₃COH, –CO]⁺, 69 [CF₃]⁺, 57 [C(CH₃)₃]⁺.

Reaction of 5a-5c with Alcohols

To a solution of **5** (10 mmol) in dry diethyl ether (100 cm³) the corresponding alcohol (10 mmol) was added dropwise at room temperature. After stirring the reaction mixture for 12 h at room temperature, it was heated 3-12 h under reflux (¹⁹F NMR control). After removal of the solvent the residue was purified by distillation (Büchi Kugelrohr oven) or recrystallization.

Isopropyl [(4S)-2,2-Bis(trifluoromethyl)-5-oxo-1,3-oxazolidin-4-yl]acetate (**6a**, C₁₀H₁₁F₆NO₄)

5a (2.99 g, 10 mmol) was reacted with isopropanol (0.60 g, 0.83 cm³, 10 mmol) in dry diethyl ether to give **6a** (3.23 g, 100%); mp 65–66°C; $[\alpha]_{D} = -23.3^{\circ} \text{ cm}^{3} \text{ g}^{-1} \text{ dm}^{-1}$ (c = 1.2, CHCl₃); IR (KBr): $\bar{\nu} = 3320$, 1810, 1720 cm⁻¹; ¹H NMR (CDCl₃): $\delta = 1.26$ (d, J = 6.0 Hz, 6H), 2.62 (dd, J = 17.5, 9.5 Hz, 1H), 2.92 (dd, J = 17.5, 3.0 Hz, 1H), 3.64 (d, J = 6.5 Hz, 1H, NH), 4.35 (ddd, J = 9.5, 6.5, 3.0 Hz, 1H), 5.05 (sept, J = 6.0 Hz, 1H) ppm; ¹³C NMR (CDCl₃): $\delta = 21.9$, 38.1, 51.6, 69.9, 89.1 (sept, J = 34.0 Hz), 120.3 (q, J = 283.0 Hz), 121.5 (q, J = 286.0 Hz), 170.1, 170.2 ppm; ¹⁹F NMR (CDCl₃): $\delta = -4.45$ (q, J = 9.0 Hz, 3F, CF₃), -3.59 (q, J = 9.0 Hz, 3F, CF₃) ppm; MS (EI): m/z = 323 [M]⁺, 308 [M–CH₃]⁺, 281 [M–C₃H₆]⁺, 264 [M–C₃H₇O]⁺, 235 [M–C₃H₇O, –CHO]⁺, 191 [M–C₃H₇O, –CHO, –CO₂]⁺, 43 [C₃H₇]⁺.

Isopropyl [(5S)-2,2-Bis(trifluoromethyl)-4-oxo-1,3-dioxolan-5-yl]acetate (**6b**, C₁₀H₁₀F₆O₅)

5b (3.01 g, 10 mmol) was reacted with isopropanol (0.60 g, 10 mmol) in dry diethyl ether (20 cm³) to give **6b** (1.73 g, 53%); bp 70°C (0.1 torr); colorless liquid; $[\alpha]_{\rm D} = -11.1^{\circ}$ cm³ g⁻¹ dm⁻¹ (c = 1.3, CHCl₃); IR (CDCl₃): $\bar{\nu} = 1845$, 1725 cm⁻¹; ¹H NMR (CDCl₃): $\delta = 1.27$ (d, J = 6.5 Hz, 6H), 2.86 (dd, J = 17.0, 7.5 Hz, 1H), 2.98 (dd, J = 17.0, 4.0 Hz, 1H), 5.08 (sept, J = 6.5 Hz, 1H), 5.09 (dd, J = 7.5, 4.0 Hz, 1H) ppm; ¹³C NMR (CDCl₃): $\delta = 21.0$, 21.0, 36.0, 69.5, 71.8, 97.6 (sept, J = 36.0 Hz), 118.8 (q, J = 288.0 Hz), 119.7 (q, J = 288.0 Hz), 166.9, 167.0 ppm; ¹⁹F NMR (CDCl₃): $\delta = -2.34$ (q, J = 7.0 Hz, 3F, CF₃), -2.06 (q, J = 7.0 Hz, 3F, CF₃) ppm; MS (EI): m/z = 309 [M–CH₃]⁺, 265 [M–OCH(CH₃)₂]⁺.

Isopropyl [2,2-Bis(trifluoromethyl)-5-oxo-1,3-oxathiolan-4-yl]acetate (**6c**, C₁₀H₁₀F₆O₄S)

5c (3.17 g, 10 mmol) was reacted with isopropanol (0.60 g, 10 mmol) in dry diethyl ether (20 cm³) to give **6c** (3.37 g, 99%); bp 67°C (1 torr); IR (KBr): $\bar{\nu} = 1820$, 1730 cm⁻¹; ¹H NMR (CDCl₃): $\delta = 1.22$ (d, J = 6.5 Hz, 6H), 2.80 (dd, J = 17.5, 10.5 Hz, 1H), 3.22 (dd, J = 17.5, 3.5 Hz, 1H), 4.48 (dd, J = 10.5, 3.5 Hz, 1H), 5.02 (sept, J = 6.5 Hz, 1H) ppm; ¹³C NMR (CDCl₃): $\delta = 21.6$, 38.8, 42.1, 70.2, 83.6 (sept, J = 35.0 Hz), 121.1 (q, J = 284.0 Hz), 121.5 (q, J = 284.0 Hz), 169.0, 170.1 ppm; ¹⁹F NMR (CDCl₃): $\delta = -0.56$ (q, J = 9.0 Hz, 3F, CF₃), 0.26 (q, J = 9.0 Hz, 3F, CF₃) ppm; MS (EI): m/z = 340 [M]⁺, 325 [M–CH₃]⁺, 298 [M–(CH₃)₂]⁺, 281 [M–(CH₃)₂CHO]⁺, 252 [M–(CH₃)₂CHOCHO]⁺, 87 [(CH₃)₂CHOCO]⁺, 59 [(CH₃)₂CHO]⁺, 43 [(CH₃)₂CH]⁺.

Allyl [(4S)-2,2-Bis(trifluoromethyl)-5-oxo-1,3-oxazolidin-4-yl]acetate (7a, C₁₀H₉F₆NO₄)

5a (2.99 g, 10 mmol) was reacted with allyl alcohol (0.58 g, 10 mmol) in dry diethyl ether to give **7c** (2.67 g, 83%); bp 62°C (5 torr); colorless liquid; $[\alpha]_{\rm D} = -23.6^{\circ} \text{ cm}^3 \text{ g}^{-1} \text{ dm}^{-1}$ (c = 1.4, CHCl₃); IR (film): $\bar{\nu} = 1835$, 1735 cm⁻¹; ¹H NMR (CDCl₃): $\delta = 2.65$ (dd, J = 17.5, 10.0 Hz, 1H), 2.95 (dd,

 $J = 17.5, 3.0 \text{ Hz}, 1\text{H}, 3.56 \text{ (d, } J = 7.0 \text{ Hz}, 1\text{H}, \text{NH}, 4.33 \text{ (ddd, } J = 10.0, 7.0, 3.0 \text{ Hz}, 1\text{H}), 4.58-4.61 \text{ (m, 2H)}, 5.21-5.32 \text{ (m, 2H)}, 5.79-5.92 \text{ (m, 1H) ppm;}^{13}\text{C NMR (CDCl_3): } \delta = 37.8, 51.5, 66.4, 88.4 \text{ (sept, } J = 34.0 \text{ Hz}), 119.3, 120.2 \text{ (q, } J = 283.0 \text{ Hz}), 121.4 \text{ (q, } J = 285.0 \text{ Hz}), 131.4, 169.9, 170.1 \text{ ppm;}^{19}\text{F NMR (CDCl_3): } \delta = -3.15 \text{ (q, } J = 9.0 \text{ Hz}, 3\text{F, CF}_3), -2.23 \text{ (q, } J = 9.0 \text{ Hz}, 3\text{F, CF}_3) \text{ ppm;} \text{ MS (EI):} m/z = 321 \text{ [M]}^+, 280 \text{ [M-CH}_2 = \text{CHCH}_2]^+, 262 \text{ [M-CH}_2 = \text{CHCH}_3, -\text{OH}]^+, 236 \text{ [280-CO}_2]^+, 222 \text{ [236-CH}_2]^+, 220 \text{ [262-CH}_2\text{CO}]^+, 166 \text{ [(CF}_3)_2\text{CO}]^+, 99 \text{ [C}_5\text{H}_7\text{O}_2]^+, 69 \text{ [CF}_3]^+.$

Allyl [(5S)-2,2-Bis(trifluoromethyl)-4-oxo-1,3-dioxolan-5-yl]acetate (7b, C₁₀H₈F₆O₅)

5b (3.01 g, 10 mmol) was reacted with allyl alcohol (0.58 g, 10 mmol) in dry diethyl ether (20 cm³) to give **7b** (2.09 g, 65%); bp 50°C (5 torr); colorless liquid; $[\alpha]_{\rm D} = -15.5^{\circ}$ cm³ g⁻¹ dm⁻¹ (*c* = 1.1, CHCl₃); IR (film): $\bar{\nu} = 1855$, 1745 cm⁻¹; ¹H NMR (CDCl₃): $\delta = 2.90$ (dd, J = 17.5, 7.5 Hz, 1H), 3.05 (dd, J = 17.5, 4.0 Hz, 1H), 4.65–4.68 (m, 2H), 5.08 (dd, J = 7.5, 4.0 Hz, 1H), 5.28 (dd, J = 14.5, 1.0 Hz, 1H), 5.34 (dd, J = 14.5, 1.0 Hz, 1H), 5.81–5.98 (m, 1H) ppm; ¹³C NMR (CDCl₃): $\delta = 36.2$, 66.6, 71.9, 97.8 (sept, J = 36.0 Hz), 118.8 (q, J = 287.0 Hz), 119.2, 119.7 (q, J = 290.0 Hz), 131.3, 167.1, 167.4 ppm; ¹⁹F NMR (CDCl₃): $\delta = -4.39$ (q, J = 7.5 Hz, 3F, CF₃), -4.10 (q, J = 7.5 Hz, 3F, CF₃) ppm; MS (EI): m/z = 322 [M]⁺, 294 [M–CO]⁺, 265 [M–CH₂=CHCH₂O]⁺, 253 [M–CF₃]⁺, 224 [C₅H₂F₆O₃]⁺, 167 [(CF₃)₂COH]⁺, 115 [M–CH₂=CHCH₂O, -(CF₃)₂CO]⁺, 99 [M–CH₂=CHCH₂O, -(CF₃)₂CO]⁺, 69 [CF₃]⁺, 57 [CH₂=CHCH₂O]⁺, 41 [CH₂=CHCH₂]⁺.

Allyl [2,2-Bis(trifluoromethyl)-5-oxo-1,3-oxathiolan-4-yl]acetate (7c, C₁₀H₈F₆O₄S)

5c (3.17 g, 10 mmol) was reacted with allyl alcohol (0.58 g, 10 mmol) in dry diethyl ether (20 cm³) to give **7c** (3.04 g, 90%); bp 67°C (1.3 torr); colorless liquid; IR (film): $\bar{\nu} = 1820, 1730 \text{ cm}^{-1}$; ¹H NMR (CDCl₃): $\delta = 2.93$ (dd, J = 17.5, 10.5 Hz, 1H), 3.33 (dd, J = 17.5, 3.5 Hz, 1H), 4.51 (dd, J = 10.5, 3.5 Hz, 1H), 4.66 (m, 2H), 5.30 (dd, J = 10.5, 1.0 Hz, 1H), 5.35 (dd, J = 18.5, 1.0 Hz, 1H), 5.86–5.96 (m, 1H) ppm; ¹³C NMR (CDCl₃): $\delta = 38.4, 42.0, 66.7, 83.6$ (sept, J = 35.0 Hz), 119.5, 120.9 (q, J = 283.0 Hz), 121.4 (q, J = 283.0 Hz), 131.2, 169.3, 170.0 ppm; ¹⁹F NMR (CDCl₃): $\delta = 0.86$ (q, $J = 9.0 \text{ Hz}, 3\text{ F}, \text{ CF}_3$), 1.67 (q, $J = 9.0 \text{ Hz}, 3\text{ F}, \text{ CF}_3$) ppm; MS (EI): m/z = 338 [M]⁺, 297 [M–CH₂=CHCH₂]⁺, 281 [M–CH₂=CHCH₂O]⁺, 253 [M–CH₂=CHCH₂O, –CO]⁺, 57 [CH₂=CHCH₂O]⁺, 41 [CH₂=CHCH₂]⁺.

5a (5.0 g, 17 mmol) and ethylene glycol (0.52 g, 8.5 mmol) were reacted in dry diethyl ether (30 cm³). Yield: 3.15 g (63%) **8a**; mp 75°C; $[\alpha]_D = +4.0^{\circ}$ cm³ g⁻¹ dm⁻¹ (c = 1.0, acetone); IR (KBr): $\bar{\nu} = 3400$, 3380, 1830, 1730 cm⁻¹; ¹H NMR (CDCl₃): $\delta = 2.73$ (dd, J = 17.5, 9.5 Hz, 2H), 3.00 (dd, J = 17.5, 3.0 Hz, 2H), 3.66 (d, J = 7.0 Hz, 2H, NH), 4.34–4.45 (m, 6H) ppm; ¹³C NMR (CDCl₃): $\delta = 37.5$, 51.4, 63.0, 88.4 (sept, J = 35.0 Hz), 120.1 (q, J = 285.0 Hz), 121.3 (q, J = 288.0 Hz), 169.8, 169.9 ppm; ¹⁹F NMR (CDCl₃): $\delta = -2.2$ (q, J = 8.0 Hz, 6F, 2CF₃), -1.4 (q, J = 8.0 Hz, 6F, 2CF₃) ppm; MS (EI): m/z = 588 [M]⁺, 544 [M–CO₂]⁺, 500 [M–2CO₂]⁺, 308 [M–C₇H₄F₆NO₄]⁺, 166 [(CF₃)₂CO]⁺.

Ethan-1,2-diyl Di[(5S)-*bis*(*trifluoromethyl*)-4-*oxo-1,3-dioxolan-5-yl*]*acetate* (**8b**, $C_{16}H_{10}F_{12}O_{10}$)

To a solution of **5b** (4.51 g, 15 mmol) in dry diethyl ether (25 cm³), a solution of ethylene glycol (0.42 cm³, 7.5 mmol) in dry diethyl ether (25 cm³) was dropped slowly with stirring. After stirring for several days at room temperature (¹⁹F NMR control) the solvent was removed. The residue was recrystallized from CHCl₃/*n*-hexane. Yield: 2.70 g (61%) **8b**; mp 66°C; $[\alpha]_{\rm D} = -4.9^{\circ}$ cm³ g⁻¹ dm⁻¹

(*c* = 1.3, CHCl₃); IR (KBr): $\bar{\nu}$ = 1860, 1740 cm⁻¹; ¹H NMR (CDCl₃): δ = 2.95 (dd, *J* = 17.5, 7.0 Hz, 2H), 3.06 (dd, *J* = 17.5, 4.0 Hz, 2H), 4.40 (d, *J* = 14.5 Hz, 2H), 4.42 (d, *J* = 14.5 Hz, 2H), 5.09 (dd, *J* = 7.0, 4.0 Hz, 2H) ppm; ¹³C NMR (CDCl₃): δ = 35.5, 62.8, 71.6, 97.7 (sept, *J* = 36.0 Hz), 118.7 (q, *J* = 287.0 Hz), 119.6 (q, *J* = 287.0 Hz), 166.8, 167.3 ppm; ¹⁹F NMR (CDCl₃): δ = -2.31 (q, *J* = 7.0 Hz, 6F, 2CF₃), -2.01 (q, *J* = 7.0 Hz, 6F, 2CF₃) ppm; MS (EI): *m*/*z* = 591 [M + H]⁺, 309 [M-C₇H₄F₆O₅]⁺, 265 [C₇H₃F₆O₄]⁺, 71 [C₃H₃O₂]⁺, 69 [CF₃]⁺, 43 [C₂H₃O]⁺.

To a solution of **5c** (4.75 g, 15 mmol) in dry diethyl ether (25 cm³), a solution of dry ethylene glycol (0.42 cm³, 7.5 mmol) in diethyl ether (25 cm³) was added slowly with stirring. After stirring for several days at room temperature the solvent was removed and the residue was distilled *in vacuo*. Yield: 3.69 g (79%) **9c**; bp 169°C (0.3 torr); IR (film): $\bar{\nu} = 1810$, 1730 cm⁻¹; ¹H NMR (CDCl₃): $\delta = 2.95$ (dd, J = 17.5, 10.0 Hz, 2H), 3.32 (dd, J = 17.5, 4.0 Hz, 2H), 4.41 (s, 4H), 4.53 (dd, J = 10.0, 4.0 Hz, 2H) ppm; ¹³C NMR (CDCl₃): $\delta = 38.0$, 41.8, 63.3, 83.5 (sept, J = 35.0 Hz), 120.9 (q, J = 283.0 Hz), 121.4 (q, J = 284.0 Hz), 169.4, 170.0 ppm; ¹⁹F NMR (CDCl₃): $\delta = -0.46$ (q, J = 9.0 Hz, 6F, 2CF₃), 0.40 (q, J = 9.0 Hz, 6F, 2CF₃) ppm; MS (EI): m/z = 622 [M]⁺, 325 [M–C₇H₃F₆O₄S]⁺, 281 [M–C₇H₃F₆O₄S], $-C_2H_4O$]⁺, 87 [COCH₂CSH]⁺, 69 [CF₃]⁺, 59 [CH₂CSH]⁺, 45 [CSH]⁺.

Reaction of 5a-5c with 1,1,1-Tris(hydroxymethyl)ethane and Pentaerythritol

In dry toluene (100 cm^3) **5** (10 mmol) and the corresponding alcohol (1,1,1-tris(hydroxymethyl)ethane: 0.40 g, 3.3 mmol; pentaerythritol: 0.34 g, 2.5 mmol) were dissolved. The mixture was heated for 3 days under reflux (¹⁹F NMR control). The solvent was removed *in vacuo*.

$1,1,1-Ethyltrismethyl Tris[(5S)-2,2-bis(trifluoromethyl)-5-oxo-1,3-oxazolidin-4-yl]acetate (9a, C_{26}H_{21}F_{18}N_3O_{12})$

5a (2.99 g, 10 mmol) gave according to the general procedure 2.39 g (79%) of **9a**, oil; IR (film): $\bar{\nu} = 1835$, 1735 cm⁻¹; ¹H NMR (acetone-d₆): $\delta = 1.09$ (s, 3H), 2.94 (dd, J = 17.0, 6.5 Hz, 3H), 3.04 (dd, J = 17.0, 4.5 Hz, 3H), 4.10 (d, J = 11.5 Hz, 3H), 4.21 (d, J = 11.5 Hz, 3H), 4.61 (m, 3H), 5.37 (d, J = 7.0 Hz, 3H, NH) ppm; ¹³C NMR (acetone-d₆): $\delta = 17.6$, 38.4, 40.1, 53.0, 67.4, 90.2 (sept, J = 35.0 Hz), 122.0 (q, J = 284.0 Hz), 123.2 (q, J = 290.0 Hz), 170.4, 172.1 ppm; ¹⁹F NMR (acetone-d₆): $\delta = -3.32$ (q, J = 9.0 Hz, 9F, 3CF₃), -2.83 (q, J = 9.0 Hz, 9F, 3CF₃) ppm; MS (FAB): m/z = 910 [M + H]⁺, 629 [M-C₇H₄F₆NO₄]⁺, 366 [M-C₇H₄F₆NO₄, -C₆H₅F₆O₂, -CO]⁺.

1,1,1-Ethyltrismethyl Tris[(5S)-2,2-bis(trifluoromethyl)-4-oxo-1,3-dioxolan-5-yl]acetate (**9b**, C₂₆H₁₈F₁₈O₁₅)

5b (3.01 g, 10 mmol) was reacted according to the general procedure. After removal of the solvent *in vacuo* the residue was triturated with dry diethyl ether and recrystallized from acetone. Yield: 2.55 g (84%) **9b**; mp 116°C; $[\alpha]_D = -17.1^{\circ} \text{ cm}^3 \text{ g}^{-1} \text{ dm}^{-1}$ (*c* = 1.1, acetone); IR (KBr): $\bar{\nu} = 1850$, 1755, 1730 cm⁻¹; ¹H NMR (acetone-d₆): $\delta = 1.08$ (s, 3H), 3.19 (dd, J = 17.5, 6.0Hz, 3H), 3.30 (dd, J = 17.5, 4.0Hz, 3H), 4.14 (d, J = 11.0 Hz, 3H), 4.22 (d, J = 11.0 Hz, 3H), 5.46 (dd, J = 6.0, 4.0 Hz, 3H) ppm; ¹³C NMR (acetone-d₆): $\delta = 16.8$, 36.0, 39.5, 67.2, 72.9, 98.2 (sept, J = 36.0 Hz), 119.9 (q, J = 285.0 Hz), 120.9 (q, J = 285.0 Hz), 167.7, 168.4 ppm; ¹⁹F NMR (acetone-d₆): $\delta = -2.84$ (q, J = 8.0 Hz, 9F, 3CF₃), -2.17 (q, J = 8.0 Hz, 9F, 3CF₃) ppm; MS (FAB): m/z = 913 [M+H]⁺, 631 [M-C₇H₃F₆O₅]⁺, 265 [C₇H₃F₆O₄]⁺.

$\label{eq:linear} \begin{array}{l} 1,1,1\mbox{-}Ethyltrismethyl \mbox{-}Tris[2,2\mbox{-}bis(trifluoromethyl)\mbox{-}5\mbox{-}oxo\mbox{-}1,3\mbox{-}oxathiolan\mbox{-}4\mbox{-}yl]acetate \\ (\textbf{9c},\mbox{-}C_{26}H_{18}F_{18}O_{12}S_3) \end{array}$

5c (3.17 g, 10 mmol) was transformed into **9c**. Yield: 3.20 g (100%); oil; IR (film): $\bar{\nu} = 1815$, 1740 cm⁻¹; ¹H NMR (CDCl₃): $\delta = 1.17$ (s, 3H), 2.98 (dd, J = 17.5, 10.0Hz, 3H), 3.34 (dd, J = 17.5, 3.5 Hz, 3H), 4.09 (d, J = 11.0 Hz, 3H), 4.18 (d, J = 11.0 Hz, 3H), 4.55 (dd, J = 10.0, 3.5 Hz, 3H) ppm; ¹³C NMR (CDCl₃): $\delta = 17.2$, 38.1, 39.0, 41.8, 66.5, 83.7 (sept, J = 35.0 Hz), 120.9 (q, J = 283.0 Hz), 121.4 (q, J = 284.0 Hz), 169.2, 169.8 ppm; ¹⁹F NMR (CDCl₃): $\delta = -0.49$ (q, J = 9.0 Hz, 9F, 3CF₃), 0.42 (q, J = 9.0 Hz, 9F, 3CF₃) ppm; MS (EI): m/z = 960 [M]⁺, 663 [M–C₇H₃F₆O₄S]⁺, 410 [M–C₇H₃F₆O₄S]⁻, 251 [M–C₇H₃F₆O₄S]⁻, 281 [C₇H₃F₆O₃S]⁺, 182 [(CF₃)₂CS]⁺.

Pentaerythrityl Tetrakis[(4S)-2,2-bis(trifluoromethyl)-5-oxo-1,3-oxazolidin-4-yl]acetate (**10a**, C₃₃H₂₄F₂₄N₄O₁₆)

5a (2.99 g, 10.0 mmol) was reacted with pentaerythritol (0.34 g, 2.5 mmol) according to the general procedure. After removal of the solvent *in vacuo*, the residue was carefully triturated with dry diethyl ether and recrystallized from acetone. Yield: 2.64 g (89%) **10a**; mp 138°C; $[\alpha]_D = +19.75^{\circ} \text{ cm}^3 \text{ g}^{-1} \text{ dm}^{-1}$ (c = 1.0, acetone); IR (KBr): $\bar{\nu} = 3380$, 2980, 1830, 1735 cm⁻¹; ¹H NMR (acetone-d₆): $\delta = 2.91$ (dd, J = 17.0, 6.5 Hz, 4H), 3.00 (dd, J = 17.0, 4.5 Hz, 4H), 4.22 (d, J = 11.5 Hz, 4H), 4.32 (d, J = 11.5 Hz, 4H), 4.58 (m, 4H), 5.31 (d, J = 7.0 Hz, 4H, NH) ppm; ¹³C NMR (acetone-d₆): $\delta = 37.7$, 43.2, 52.2, 63.4, 89.3 (sept, J = 34.0 Hz), 121.7 (q, J = 285.0 Hz), 122.5 (q, J = 289.0 Hz), 169.7, 171.4 ppm; ¹⁹F NMR (acetone-d₆): $\delta = -3.32$ (q, J = 9.0 Hz, 12F, 4CF₃), -2.83 (q, J = 9.0 Hz, 12F, 4CF₃) ppm; MS (EI): m/z = 600 [C₁₇H₁₂F₁₂N₂O₈]⁺, 200 [C₅F₆NO₂]⁺.

$\label{eq:perturbative} Pentaerythrityl \ Tetrakis[(5S)-2,2-bis(trifluoromethyl)-4-oxo-1,3-dioxolan-5-yl]acetate \ (10b, \ C_{33}H_{20}F_{24}O_{20})$

5b (3.01 g, 10 mmol) was reacted with pentaerythritol (0.34 g, 2.5 mmol) according to the general procedure. After removal of the solvent *in vacuo*, the residue was carefully triturated with dry diethyl ether and recrystallized from acetone. Yield: 2.62 g (88%) **10b**; mp 148°C; $[\alpha]_{\rm D} = -16.4^{\circ} \, {\rm cm}^3 {\rm g}^{-1} \, {\rm dm}^{-1}$ (*c* = 1.0, acetone); IR (KBr): $\bar{\nu} = 1840$, 1750 cm⁻¹; ¹H NMR (acetone-d₆): $\delta = 3.25$ (dd, J = 17.5, 6.5 Hz, 4H), 3.36 (dd, J = 17.5, 4.0 Hz, 4H), 4.35 (d, J = 11.5 Hz, 4H), 4.41 (d, J = 11.5 Hz, 4H), 5.51 (dd, J = 6.5, 4.0 Hz, 4H) ppm; ¹³C NMR (acetone-d₆): $\delta = 35.8$, 43.0, 63.8, 72.7, 98.1 (sept, J = 36.0 Hz), 119.8 (q, J = 289.0 Hz), 120.7 (q, J = 285.0 Hz), 167.6, 168.2 ppm; ¹⁹F NMR (acetone-d₆): $\delta = -2.82$ (q, J = 9.0 Hz, 12F, 4CF₃), -2.18 (q, J = 9.0 Hz, 12F, 4CF₃) ppm; MS (EI): m/z = 1192 [M]⁺, 911 [M-C₇H₃F₆O₅]⁺, 688 [M-C₇H₃F₆O₅, $-C_5$ HF₆O₃]⁺, 616 [M-C₇H₃F₆O₄]⁺, 98 [M-2C₇H₄F₆O₅, $-2C_7$ H₃F₆O₄]⁺.

$\label{eq:perta} Pentaerythrityl \ Tetrakis[2,2-bis(trifluoromethyl)-5-oxo-1,3-oxathiolan-4-yl]acetate \\ (10c, \ C_{33}H_{20}F_{24}O_{16}S_4)$

3c (3.17 g, 10 mmol) gave according to the general procedure **10c** (3.14 g, 100%); mp 39°C; IR (KBr): $\bar{\nu} = 1815$, 1740 cm⁻¹; ¹H NMR (CDCl₃): $\delta = 2.93$ (dd, J = 18.0, 9.5 Hz, 4H), 3.26 (dd, J = 18.0, 4.0 Hz, 4H), 4.14 (d, J = 12.0 Hz, 4H), 4.25 (d, J = 12.0 Hz, 4H), 4.50 (dd, J = 9.5, 4.0 Hz, 4H) ppm; ¹³C NMR (CDCl₃): $\delta = 37.8$, 41.7, 42.8, 62.4, 83.5 (sept, J = 35.0 Hz), 120.8 (q, J = 283.0 Hz), 121.3 (q, J = 285.0 Hz), 169.1, 169.9 ppm; ¹⁹F NMR (CDCl₃): $\delta = 0.82$ (q, J = 9.0 Hz, 12F, 4CF₃), 1.78 (q, J = 9.0 Hz, 12F, 4CF₃) ppm; MS (EI): m/z = 959 [M–C₇H₃F₆O₄S]⁺, 281 [C₇H₃F₆O₃S]⁺, 182 [(CF₃)₂CS]⁺, 132 [M–4C₇H₃F₆O₃S]⁺, 113 [CF₃CS]⁺.

Ethan-1,2-diyl Di[(2S)-malate] (**11b**, $C_{10}H_{14}O_{10}$)

9b (1.48 g, 2.5 mmol) was heated in water/*THF* (bath temperature: 65°C) for 3 h. After removal of the solvent the residue was extracted with *DCM* (5×10 cm³). The combined organic layer was dried with MgSO₄, then the solvent was removed *in vacuo*. Yield: 0.34 g (52%) **11b**; oil; IR (film): $\bar{\nu}$ = 3600–2800, 1725 cm⁻¹; ¹H NMR (*DMSO*-d₆): δ = 2.41 (dd, *J* = 15.5, 8.0 Hz, 2H), 2.57 (dd, *J* = 15.5, 5.0 Hz, 2H), 4.06 (s, 4H), 4.15 (dd, *J* = 8.0, 5.0 Hz, 2H) ppm; ¹³C NMR (*DMSO*-d₆): δ = 39.3, 62.3, 67.1, 170.6, 174.7 ppm.

4-(1,1,1-Ethyltrismethyl) Tris[(2S)-malate] (12b, C₁₇H₂₄O₁₅)

9b (0.46 g, 0.5 mmol) was hydrolyzed. Yield: 0.18 g (78%) **12b**; oil; IR (film): $\bar{\nu} = 3535-3230$, 1730 cm⁻¹; ¹H NMR (acetone-d₆): $\delta = 0.93$ (s, 3H), 2.57 (dd, J = 15.5, 7.5 Hz, 3H), 2.73 (dd, J = 15.5, 5.0 Hz, 3H), 3.98 (s, 6H), 4.29 (dd, J = 7.5, 5.0 Hz, 3H), 5.49 (s, br, 3H, OH) ppm; ¹³C NMR (acetone-d₆): $\delta = 16.5$, 38.8, 39.2, 65.9, 67.3, 170.0, 174.1 ppm; MS (FAB): m/z = 469 [M + H]⁺, 451 [M-H₂O]⁺.

4-(1,1,1-Ethyltrismethyl) Tris[thiomalate] (12c, C₁₇H₂₄O₁₂S₃)

9c (0.96 g, 1.0 mmol) was heated (65°C, bath temperature) in 25 cm³ of an acetonitrile/water mixture for 6 h. After evaporation of the solvent, the residue was extracted with ethyl acetate (3×20 cm³). The organic layer was extracted with water, dried with MgSO₄, and evaporated to dryness. Yield: 0.25 g (48%) **12c**; oil; IR (film): $\bar{\nu} = 3435-2925$, 1735, 1715 cm⁻¹; ¹H NMR (acetone-d₆): $\delta = 1.03$ (s, 3H), 2.69 (d, J = 9.0 Hz, 3H), 2.80 (dd, J = 17.0, 6.0 Hz, 3H), 3.02 (dd, J = 17.0, 9.0 Hz, 3H), 3.79 (ddd, J = 9.0, 6.0, 6.0 Hz, 3H), 4.04 (d, J = 10.0 Hz, 3H), 4.09 (d, J = 10.0 Hz, 3H) pm; ¹³C NMR (acetone-d₆): $\delta = 16.5$, 35.8, 38.8, 39.9, 66.0, 170.0, 173.2 ppm; MS (EI): m/z = 517 [M]⁺, 500 [M–OH]⁺, 410 [M–2CO₂H]⁺, 335 [M–3CO₂H, –CH₃]⁺, 251 [M–2COCH₂CH(SH)CO₂H]⁺, 42 [C₂H₂O]⁺.

4-Pentaerythrityl Tetrakis[(2S)-malate] (13b, C₂₁H₂₈O₂₀)

10b (1.19 g, 1.0 mmol) was heated in acetonitrile/water mixture (100 cm³, 4:1) at 65°C for 3 h. The reaction mixture was concentrated *in vacuo* and afterwards extracted with *DCM* (5×15 cm³). The combined organic layer was washed with water and dried with MgSO₄. Yield: 0.32 g (53%) **13b**; oil; IR (film): $\bar{\nu} = 3600-2800$, 1720 cm⁻¹; ¹H NMR (acetone-d₆): $\delta = 2.76$ (dd, J = 16.0, 7.0 Hz, 4H), 2.87 (dd, J = 16.0, 4.5 Hz, 4H), 4.22 (s, 8H), 4.52 (dd, J = 7.0, 4.5 Hz, 4H) ppm; ¹³C NMR (acetone-d₆): $\delta = 39.7$, 43.0, 63.3, 67.8, 170.6, 174.8 ppm.

4-Pentaerythrityl Tetrakis[thiomalate] (13c, C₂₁H₂₈O₁₆S₄)

9c (0.96 g, 1.0 mmol) was heated in an acetonitrile/water mixture (25 cm³, 4:1) to 65°C for 6 h. Yield: 0.51 g (77%) **13c**; oil; IR (film): $\bar{\nu} = 3395-2930$, 1730, 1700 cm⁻¹; ¹H NMR (acetone-d₆): $\delta = 2.76$ (d, J = 9.5 Hz, 4H), 2.88 (dd, J = 17.0, 5.5 Hz, 4H), 3.07 (dd, J = 17.0, 9.5 Hz, 4H), 3.85 (ddd, J = 9.0, 6.0, 6.0 Hz, 4H), 4.24 (d, J = 10.0 Hz, 4H), 4.28 (d, J = 11.0 Hz, 4H) ppm; ¹³C NMR (acetone-d₆): $\delta = 37.1$, 41.2, 43.8, 64.1, 171.1, 174.3 ppm; MS (EI): m/z = 664 [M]⁺, 501 [M–C₅H₇O₄S]⁺, 133 [C₄H₅O₃S]⁺.

4-Allyl 1-Methyl (2S)-Malate (14b, C₈H₁₂O₅)

7b (1.61 g, 5.0 mmol) was heated in dry methanol (10 cm³) under reflux. After the reaction was complete (¹⁹F NMR analysis) the solvent was evaporated, the residue was dissolved in CHCl₃, and extracted with water. The organic phase was dried with MgSO₄ and evaporated to dryness. Yield: 0.76 g (81%) **14b**; oil;

 $[\alpha]_{\rm D} = -7.3^{\circ} \text{ cm}^3 \text{ g}^{-1} \text{ dm}^{-1} (c = 1.1, \text{ CHCl}_3); \text{ IR (film): } \bar{\nu} = 1740 \text{ cm}^{-1}; {}^{1}\text{H} \text{ NMR (CDCl}_3); \delta = 2.83 \\ (\text{dd}, J = 16.0, 9.0 \text{ Hz}, 1\text{H}), 2.87 (\text{dd}, J = 16.0, 3.5 \text{ Hz}, 1\text{H}), 3.79 (s, 3\text{H}), 4.52 (m, 1\text{H}), 4.60 (\text{dd}, J = 5.5, 1.5 \text{ Hz}, 1\text{H}), 4.61 (\text{dd}, J = 5.5, 1.5 \text{ Hz}, 1\text{H}), 5.23 (m, 1\text{H}), 5.30 (m, 1\text{H}), 5.88 (m, 1\text{H}) \text{ ppm; } {}^{13}\text{C} \text{ NMR} \\ (\text{CDCl}_3): \delta = 38.7, 53.0, 65.8, 67.4, 118.8, 131.7, 170.4, 173.8 \text{ ppm; MS (EI): } m/z = 188 \text{ [M]}^+, 129 \\ \text{[M-CO}_2\text{CH}_3]^+, 103 \text{ [M-CO}_2\text{CH}_2\text{CH} = \text{CH}_2]^+, 87 \text{ [M-CO}_2\text{CH}_3, -\text{CH}_2\text{CH} = \text{CH}_2]^+.$

4-Allyl 1-Methyl Thiomalate (14c, C₈H₁₂O₄S)

7c (1.02 g, 5.0 mmol) was heated in dry methanol (10 cm³) under reflux. After the reaction was complete (¹⁹F NMR analysis) the solvent was evaporated and the residue was dissolved in CHCl₃. The organic phase was dried with MgSO₄ and the solvent distilled off *in vacuo*. The residue was distilled in a Büchi Kugelrohr oven. Yield: 0.71 g (70%) **8c**; bp 101°C ($2.6 \cdot 10^{-1}$ torr); IR (film): $\bar{\nu} = 1735$ cm⁻¹; ¹H NMR (CDCl₃): $\delta = 2.22$ (d, J = 9.5 Hz, 1H), 2.80 (dd, J = 17.0, 6.0 Hz, 1H), 3.06 (dd, J = 17.0, 9.0 Hz, 1H), 3.73 (dd, J = 9.0, 6.0 Hz, 1H), 3.77 (s, 3H), 4.60 (m, 2H), 5.25 (dd, J = 10.5, 1.5 Hz, 1H), 5.32 (dd, J = 17.5, 1.5 Hz, 1H), 5.89 (m, 1H) ppm; ¹³C NMR (CDCl₃): $\delta = 36.2$, 40.0, 52.9, 65.7, 118.6, 131.8, 170.2, 172.8 ppm; MS (EI): m/z = 204 [M]⁺, 172 [M–CH₃OH]⁺, 163 [M–CH₂=CHCH₂]⁺, 146 [M–CH₂CH=CH₂OH]⁺, 132 [M–CH₂=CHCH₂, –CH₃O]⁺, 119 [M–CH₂=CHCH₂, –CO₃]⁺, 59 [CH₃CO₂]⁺, 41 [CH₂CH=CH₂]⁺.

4-Pentaerythrityl 1-Methyl Tetrakis(thiomalate) (15, C25H36O16S4)

10c (0.63 g, 0.5 mmol) was heated in methanol (10 cm³) for 24 h under reflux. After evaporation of the solvent the residue was redissolved in CHCl₃. The organic layer was washed with citric acid (10% solution) and water. After drying the organic layer with MgSO₄ the solvent was removed *in vacuo*. The remaining oil was analytically pure. Yield: 0.32 g (89%) **15c**; oil; IR (film): $\bar{\nu} = 1745$, 1725 cm⁻¹; ¹H NMR (CDCl₃): $\delta = 2.24$ (d, J = 9.5 Hz, 4H), 2.79 (dd, J = 17.0, 6.0 Hz, 4H), 3.03 (dd, J = 17.0, 9.0 Hz, 4H), 3.73 (dd, J = 9.0, 6.0 Hz, 4H), 3.77 (s, 12H), 4.12 (s, 8H) ppm; ¹³C NMR (CDCl₃): $\delta = 35.7$, 39.5, 42.0, 52.9, 62.3, 169.7, 172.5 ppm; MS (EI): m/z = 720 [M]⁺, 688 [M–CH₃OH]⁺, 656 [M–2CH₃OH]⁺, 377 [M–2CH₂CH(SH)CO₂CH₃, –CH(SH)CO₂CH₃]⁺, 119 [CH₂CH(SH)CO₂CH₃]⁺, 59 [CO₂CH₃]⁺.

1-Allyl 4-Isopropyl 2-(3-Hydroxypropylthio)succinate (16, C₁₃H₂₂O₅S)

6c (1.70 g, 5.0 mmol) was heated in allyl alcohol (10 cm³) under reflux until the starting material was consumed (¹⁹F NMR analysis). The solvent was removed *in vacuo* and the residue distilled in a Büchi Kugelrohr oven. Yield: 0.97 g (67%) **16**; oil; bp 171°C (0.2 torr); IR (film): $\bar{\nu} = 3530-3395$, 2980, 1730, 1160 cm⁻¹; ¹H NMR (CDCl₃): $\delta = 1.21$ (d, J = 6.0 Hz, 6H), 1.83 (m, 2H), 2.64 (dd, J = 17.0, 6.0 Hz, 1H), 2.78 (dt, J = 7.0, 2.0 Hz, 2H), 2.95 (dd, J = 17.0, 9.5 Hz, 1H), 3.68 (dd, J = 9.5, 6.0 Hz, 1H), 3.71 (t, J = 6.0 Hz, 2H), 4.63 (dd, J = 5.5, 1.0 Hz, 1H), 5.24 (dd, J = 10.0, 1.0 Hz, 1H), 5.35 (dd, J = 17.0, 1.0 Hz, 1H), 5.90 (m, 1H) ppm; ¹³C NMR (CDCl₃): $\delta = 21.6$, 27.9, 31.7, 36.6, 41.5, 60.8, 65.8, 68.6, 118.5, 131.6, 170.1, 171.4 ppm; MS (EI): m/z = 290 [M]⁺, 272 [M–H₂]⁺, 231 [M–CH₂CH₂CH₂OH]⁺, 214 [M–(CH₃)₂CHO, –OH]⁺, 200 [M–CH₂]⁺, [M–CH₂CH₂CH₂CH₂OH, –CH₂CH=CH₂]⁺, 173 [M–(CH₃)₂CHO, –OH, –CH₂CH=CH₂]⁺, 158 [M–SCH₂CH₂CH₂CH₂SH, –CH₂CH=CH]⁺, 145 [M–(CH₃)₂CHO, –OH, –CH₂CH=CH₂, –CO]⁺, 115 [M–SCH₂CH₂CH₂CH₂SH, –CH₂CH=CH]⁺.

Aminolysis with Benzylamine

To a solution of **8–10** (0.5 mmol) in *THF* (20 cm^3) benzylamine (1.5 equiv.) was added slowly with stirring at 0°C. The mixture was allowed to warm up to room temperature and stirring was continued

until the starting material was consumed (¹⁹F NMR analysis). The precipitate was filtered off, washed carefully with ice-cold ether, and dried *in vacuo*.

Ethan-1,2-diyl Di[(2S)-1-(N-benzylmalamide)] (17b, C₂₄H₂₈N₂O₈)

8b (1.77 g, 3.0 mmol) was reacted with benzylamine (0.16 g, 1.5 mmol) according to the general procedure to give **16b** (0.75 g, 53%); mp 150°C; IR (KBr): $\bar{\nu} = 3390$, 3330, 1725, 1620 cm⁻¹; ¹H NMR (*DMSO*-d₆): $\delta = 2.51$ (dd, J = 15.5, 8.5 Hz, 2H), 2.75 (dd, J = 15.5, 4.0 Hz, 2H), 4.22 (s, 4H), 4.29 (d, J = 6.0 Hz, 4H), 4.31 (m, 2H), 5.97 (d, J = 5.5 Hz, 2H), 7.27 (m, 10H), 8.39 (t, J = 6.0 Hz, 2H, NH) ppm; ¹³C NMR (*DMSO*-d₆): $\delta = 39.6$, 41.9, 62.0, 68.3, 126.7, 127.2, 128.2, 139.5, 170.6, 172.6 ppm; MS (EI): m/z = 267 [C₁₃H₁₇NO₅]⁺, 205 [M-C₁₃H₁₇NO₅]⁺, 106 [C₇H₇NH]⁺, 91 [C₇H₇]⁺.

Ethan-1,2-diyl Di[(2S)-1-(N-benzylthiomalamide)] (17c, C₂₄H₂₈N₂O₆S₂)

8c (062 g, 1.0 mmol) was reacted with benzylamine (0.32 g, 3.0 mmol) in dry diethyl ether (15 cm³). Yield: 0.32 g (64%) **17c**; mp 115°C; IR (KBr): $\bar{\nu}$ = 3515–3365, 1735, 1645 cm⁻¹; ¹H NMR (*DMSO*-d₆): δ = 2.67 (dd, J = 17.0, 6.5 Hz, 2H), 2.93 (dd, J = 17.0, 9.0 Hz, 2H), 3.69 (dd, J = 9.0, 6.5 Hz, 2H), 4.17 (s, 4H), 4.25 (d, J = 5.0 Hz, 2H), 4.28 (d, J = 5.5 Hz, 2H), 7.25 (s, 5H), 7.26 (s, 5H), 8.60 (t, J = 5.5 Hz, 2H, NH) ppm; ¹³C NMR (*DMSO*-d₆): δ = 37.1, 40.3, 42.9, 62.7, 127.5, 127.7, 129.0, 139.8, 171.0, 172.1 ppm; MS (EI): m/z = 505 [M]⁺, 472 [M–SH]⁺, 366 [M–SH, –NHC₆H₇]⁺, 232 [M–SH, –NHC₆H₇, –NHC₇H₇, –CO]⁺, 106 [NHC₇H₇]⁺, 91 [C₇H₇]⁺, 77 [C₆H₅]⁺.

4-(1,1,1-Ethyltrismethyl) Tris[(2S)-1-(N-benzylmalamide)] (18, C₃₈H₄₅N₃O₁₂)

9b (0.46 g, 0.5 mmol) was reacted with benzylamine (0.16 g, 1.5 mmol) according to the general procedure to give **18** (0.35 g, 95%); mp 100°C; $[\alpha]_D = -33.9^\circ \text{ cm}^3 \text{ g}^{-1} \text{ dm}^{-1}$ (*c* = 1.0, *DMSO*); IR (KBr): $\bar{\nu} = 3600-3100$, 1730, 1650, 1530 cm⁻¹; ¹H NMR (*DMSO*-d₆): $\delta = 0.95$ (s, 3H), 2.53 (dd, J = 15.5, 8.5 Hz, 3H), 2.78 (dd, J = 15.5, 4.0 Hz, 3H), 3.99 (d, J = 11.0 Hz, 3H), 4.03 (d, J = 7.0 Hz, 3H), 4.28–4.31 (m, 9H), 5.94 (d, J = 6.0 Hz, 3H), 7.19–7.32 (m, 15H), 8.38 (t, J = 6.0 Hz, 3H, NH) ppm; ¹³C NMR (*DMSO*-d₆): $\delta = 16.5$, 38.4, 39.7, 42.0, 65.5, 68.5, 126.8, 127.3, 128.3, 139.6, 170.4, 172.7 ppm; MS (EI): m/z = 106 [C₇H₇NH]⁺, 91 [C₇H₇]⁺, 44 [CO₂]⁺.

4-Pentaerythrityl Tetrakis[(2S)-1-(N-benzylmalamide)] (19b, C₄₉H₅₆N₄O₁₆)

10b (0.60 g, 0.5 mmol) was reacted with benzylamine (0.20 g, 2.0 mmol) according to the general procedure to give **19b** (0.39 g, 82%); mp 120°C; IR (KBr): $\bar{\nu} = 3600-3100$, 1740, 1655, 1535 cm⁻¹; ¹H NMR (*DMSO*-d₆): $\delta = 2.52$ (dd, J = 15.5, 8.5 Hz, 4H), 2.79 (dd, J = 15.5, 4.0 Hz, 4H), 4.11 (d, J = 11.5 Hz, 4H), 4.17 (d, J = 11.5 Hz, 4H), 4.23–4.32 (m, 12H), 5.97 (d, J = 6.0 Hz, 4H), 7.26 (m, 20H), 8.41 (t, J = 6.0 Hz, 4H, NH) ppm; ¹³C NMR (*DMSO*-d₆): $\delta = 39.6$, 40.2, 41.9, 62.3, 68.4, 126.7, 127.2, 128.2, 139.5, 170.3, 172.6 ppm; MS (EI): m/z = 106 [C₇H₇NH]⁺, 91 [C₇H₇]⁺, 44 [CO₂]⁺.

4-Pentaerythrityl Tetrakis[1-(N-benzylthiomalamide)] (19c, C₄₉H₅₆N₄O₁₂S₄)

10c (0.63 g, 0.5 mmol) was reacted with benzylamine (0.21 g, 2.0 mmol) in dry diethyl ether (15 cm³). When the reaction was complete, the solvent was removed *in vacuo*. The residue was extracted with *DCM*, washed with diluted HCl and water, dried with MgSO₄, then the solvent was removed *in vacuo*. Yield: 0.44 g (87%) **19c**; oil; IR (film): $\bar{\nu}$ = 3370–3300, 1745, 1650, 1550 cm⁻¹; ¹H NMR (CDCl₃): δ = 2.52 (dd, *J* = 18.5, 4.5 Hz, 4H), 3.11 (dd, *J* = 18.5, 9.0 Hz, 4H), 3.84 (m, 4H), 4.12 (d, *J* = 11.5 Hz, 4H), 4.36 [d, *J* = 11.5 Hz, 4H), 4.65 (s, 8H), 7.25–7.34 (m, 24H) ppm; ¹³C NMR (CDCl₃): δ = 34.2,

37.7, 40.2, 43.0, 62.3, 127.7, 128.2, 128.4, 128.8, 170.4, 173.9 ppm; MS (FAB): $m/z = 1021 \text{ [M]}^+$, 222 $[C_{11}H_{12}NO_2S]^+$, 106 $[NHC_7H_7]^+$.

4-(1,1,1-Ethyltrismethyl) Tris[((2S)-malo-1-yl)phenylalanine tert-butylester] (**20**, C₅₆H₇₅N₃O₁₈)

A solution of **9b** (0.46 g, 0.5 mmol) in *THF* (50 cm³) was stirred with *L*-phenylalanine *tert*-butylester (0.44 g, 2.0 mmol) at room temperature for 4 d. The progress of the reaction was monitored by ¹⁹F NMR. For work-up see general procedure. Purification by column chromatography (eluent: ethyl acetate/hexanes). Yield: 0.44 g (85%) **20**; oil; IR (film): $\bar{\nu} = 3600-3100$, 2980, 1720, 1660, 1515 cm⁻¹; ¹H NMR (CDCl₃): $\delta = 1.01$ (s, 3H), 1.39 (s, 27H), 2.55 (dd, J = 16.5, 8.5 Hz, 3H), 2.87 (dd, J = 16.5, 3.5 Hz, 3H), 3.07 (m, 6H), 4.01 (d, J = 11.0 Hz, 3H), 4.09 (d, J = 11.0 Hz, 3H), 4.47 (dd, J = 8.5, 3.5 Hz, 3H), 4.72 (m, 3H), 7.23 (m, 15H), 7.39 (d, J = 8.5 Hz, 3H, NH) ppm; ¹³C NMR (CDCl₃): $\delta = 17.2$, 27.9, 38.2, 38.6, 39.1, 53.4, 66.0, 68.6, 82.4, 127.0, 128.4, 129.5, 136.0, 170.4, 171.5, 172.0 ppm; MS (FAB in glycerol/thioglycerol): m/z = 1078 [M]⁺, 120 [C₅H₁₂O₃]⁺.

4-Pentaerythrityl Tetrakis[((2S)-malo-1-yl)-phenylalanine tert-butylester] (21, C₇₃H₉₆N₄O₂₄)

A solution of **10b** (1.19 g, 1.0 mmol) in dry *THF* (50 cm³) was stirred with *L*-phenylalanine *tert*butyester (0.88 g, 4.0 mmol) at room temperature until ¹⁹F NMR analysis showed complete consumption of compound **10b**. For work-up see general procedure. Recrystallization from CHCl₃/hexanes. Yield: 1.21 g (93%) **21**; mp 62°C; $[\alpha]_D = +24^{\circ}$ cm³ g⁻¹ dm⁻¹ (c = 1.0, CHCl₃); IR (KBr): $\bar{\nu} = 3600-$ 3100, 2980, 1735, 1660, 1525 cm⁻¹; ¹H NMR (CDCl₃): $\delta = 1.38$ (s, 36H), 2.52 (dd, J = 16.0, 9.0 Hz, 4H), 2.85 (dd, J = 16.0, 3.0 Hz, 4H), 3.05 (dd, J = 14.0, 6.5 Hz, 4H), 3.09 (dd, J = 14.0, 6.0 Hz, 4H), 4.11 (d, J = 11.5 Hz, 4H), 4.22 (d, J = 11.5 Hz, 4H), 4.48 (dd, J = 9.0, 3.0 Hz, 4H), 4.72 (ddd, J = 8.0, 6.5, 6.0 Hz, 4H), 7.22 (m, 20H), 7.45 (d, J = 8.0 Hz, 4H, NH) ppm; ¹³C NMR (CDCl₃): $\delta = 27.8$, 38.0, 39.1, 42.0, 53.2, 62.2, 68.4, 82.3, 126.9, 128.3, 129.4, 135.9, 170.2, 171.0, 172.0 ppm; MS (FAB in *NBA*): m/z = 1436 [M + Na]⁺.

Acknowledgements

We thank Stiftung Volkswagenwerk, Hannover, and Fonds der Chemischen Industrie for financial support.

References

- (a) Kocienski PJ (2000) Protecting Groups. Georg Thieme Verlag Stuttgart. New York; (b) Greene TW, Wuts PGM (1991) Protective Groups in Organic Synthesis. Wiley & Sons, New York
- [2] (a) Wünsch E (1974) Houben-Weyl XV/1, Synthese von Peptiden. Georg Thieme Verlag, Stuttgart; (b) Greenstein JP, Winitz M (1961) Chemistry of Amino Acid. J Wiley & Sons, New York – London, vol 2, p 927; vol 3, p 1856
- [3] Burger K, Lange T, Rudolph M (2003) Heterocycles 59: 189
- [4] (a) Le Quesne WJ, Young GT (1950) J Chem Soc 1954; (b) Le Quesne WJ, Young GT (1952) J Chem Soc 24
- [5] Straka R, Zaoral M (1977) Czech Chem Comun 42: 560 and references cited therein
- [6] Sewald N, Jakubke H-D (2002) Peptides: Chemistry and Biology. Wiley VCH, Weinheim, p 76
- [7] For isopeptides see: Wehofsky N, Alisch M, Bordusa F (2001) Chem Commun 1602 and references cited therein

- [8] Burger K, Spengler J, Hennig L, Herzschuh R, Essawy SA (2000) Monatsh Chem 131: 463
- [9] Burger K, Windeisen E, Heistracher E, Lange T, Abdel Aleem AAH (2002) Monatsh Chem **133**: 41
- [10] Pumpor K, Windeisen E, Burger K (2003) J Heterocycl Chem 40: 435
- [11] Ref. [1a] pp 21 and references cited therein
- [12] Radics G, Schedel H, Heistracher E, Sieler J, Hennig L, Burger K (2002) Heterocycles 58: 213
- [13] (a) Winkler D, Burger K (1996) Synthesis 1419
- [14] Pumpor K, Böttcher C, Fehn S, Burger K (2003) Heterocycles 61: 259
- [15] Böttcher C, Spengler J, Essawy SA, Burger K (2004) Monatsh Chem 135: 853
- [16] (a) Dykes GM (2001) J Chem Technol Biotechnol 76: 903 and references cited therein; (b) Matthews OA, Shipway AN, Stoddardt JF (1998) Prog Polym Sci 23: 1
- [17] Kress J, Rosner A, Hirsch A (2000) Chem Eur J 6: 247
- [18] (a) Buhleier E, Wehner W, Vögtle F (1978) Synthesis 155; (b) Fischer M, Vögtle F (1999) Angew Chem Int Ed 38: 884
- [19] (a) Whitesides GM, Mammen M, Choi S-K (1998) Angew Chem Int Ed 37: 2754; (b) Huck WTS, Stroock AD, Whitesides GM (2000) Angew Chem Int Ed 39: 1058; (c) Henry CM (2002) Chem & Ind 26: 39
- [20] (a) Tomalia DA, Durst HD (1993) Top Curr Chem 165: 193; (b) Gopidas KR, Leheny AR, Caminati G, Turro NJ, Tomalia DH (1991) J Am Chem Soc 113: 7335

Verleger: Springer-Verlag GmbH, Sachsenplatz 4–6, 1201 Wien, Austria. – Herausgeber: Österreichische Akademie der Wissenschaften, Dr.-Ignaz-Seipel-Platz 2, 1010 Wien, und Gesellschaft Österreichischer Chemiker, Eschenbachgasse 9, 1010 Wien, Austria. – Redaktion: Getreidemarkt 9/163-OC, 1060 Wien, Austria. – Satz und Umbruch: Thomson Press Ltd., Chennai, India. – Offsetdruck: Manz Crossmedia, 1051 Wien, Austria. – Verlagsort: Wien. – Herstellungsort: Wien. – Printed in Austria.